
Git Research

Since Wendy was absolutely new to Git, she started her research from the official Git
documentation:

https://git-scm.com/

Although she spent quite a lot of time familiarising with Git, Wendy decided to write a
summary of the main Git functionalities in order to speed up the To-Do List project
development. She then shared the document with her co-workers.

What is Git?
Git is by far the most widely used modern version-control system in the world. It is
essentially designed to help you keep track of changes in source code, files and project
structure during software development.

You might not know it but even if you are new to Git, you do use a similar approach on a daily
basis. In fact, when working on files you create, save, edit and eventually save them again.
Although this is a great strategy to manage your files, there is really no way to keep track of
the history; what if you want to view how your files looked 3 saves ago?

Here is where Git shines. With Git you can keep track of all the changes you made in time to a
particular project and retrieve older versions if needed. Git also facilitates collaborative
changes to a project. This means that multiple people can work on the same directory and
bring the changes together for a unified effect while working at the same time.

Long story short, Git can be seen as a timeline where it is possible to access different
versions of a particular project, modify, remove or add functionalities. The timeline can be
edited by more people at the same time, making Git a great collaboration tool.

https://git-scm.com/

Basic Git requirements
In order to get started with Git you will need:

• Access to your computer Terminal (also known as Command Prompt)
• The Git package installed on your machine

Git Installation
Most recent computers already come with the Git package installed. Open your computer
Terminal and check if you have a working version of Git installed. Depending on your Operative
System the Terminal or Command Prompt can be located as follow:

Mac: Open the Finder, navigate to Applications/Utilities and click on the Terminal application. 

Windows: Click the Start button, navigate to All Programs/Accessories and click on the Command
Prompt application. 

Linux: Press Ctrl+Alt+T to open the Terminal

Once opened, type git version and press enter on your keyboard. If you have Git successfully
installed on your machine, you will get the following output stating the current version of Git
installed:

If instead you get a strange error message or “Command not found”, you need to first install
the Git package. You can install Git by downloading the installation package from the official
page:
https://git-scm.com/downloads

Follow the installation steps and you will be all set with Git. You can always double check your
installation by heading to the Terminal and type git version.

It is now time to configure your user name and email address. They are just records to
identify your work and give you credits when making changes to your project. 
 
Run the following two commands to configure your user name and email: 

• git config --global user.name “your full name”
• git config --global user.email “your email”

https://git-scm.com/downloads

Local vs Collaborative Git
A great feature of Git is that is locally enabled. This means that it does not need any
complicated server setup to run like other version-control systems do. You can in fact
version-control files on your desktop by simply typing commands on your Terminal. On the
other hand, in the event that you need a server-side component to centralise your work and
collaborate with your colleagues, Git allows you to do so as well.

Local Git
Let’s see a really simple example of using Git locally. There are few basic commands that you
have to learn to keep track of your project or files: 

git init :
This command initialises the Git tracking inside a folder.
 
git status:
This command checks the status of the tracking. Were there any changes inside the folder?
 
git add :
This command adds the content of the folder to a holding zone ready to be committed. See it
as a way of checking your folder content before the final save.  

git reset :
This command removes the content ready to be committed from the holding zone. If you
change your mind before finalising your save, you can use git reset to remove files from your
commit.
 
git commit -m”project version recorded”:
This command permanently records the status of the project at a specific point in time. The
message in quotes can be arbitrary, it normally describes the changes that were made.
 
git log:
This command shows a list of all the previous commits in case you want to retrieve or check
an older version of the project.

git checkout:
This command lets you navigate and eventually restore older versions of your project.

 

Let’s pretend you want to keep track of a project folder on your desktop called Animals which
contains different text files of animals’ description.

The very first step is to set up Git with the Animals folder to initialise the files tracking.  
Once you have created the Animals folder on your desktop, open the Terminal and follow the
instructions below:

• First you need to cd inside the Animals folder: type cd <your/path/to/Animals> in your
Terminal

• Next you need to initialise the Git tracking: type git init in your Terminal
 

At this point the Animals folder is ready to be used with Git.  
 
Now create a file inside the Animals folder called dog.txt.
If you run the git status command now, git will highlight in red that there is a new file called
dog.txt:

The next step is to add the dog.txt file to the holding zone for the final commit.
Run the git add . command and git will record the dog.txt file as ready to be committed. If the
file was successfully added, running the git status command should list the file as green:

Note: git add . (the dot means add all the files to the holding zone, if you only want to add
specific files you can run git add <filename>)

Finally if you are happy with the changes you can run the git commit -m”commit message”
command to finalise the changes.

Checking the status of your project now with the git status command won’t highlight any
changes as you have nothing to commit and you are up to date with the project.

Now let’s say you want to add two more animal text files to your Animals folder. Create a
cat.txt file and a snake.txt file inside the Animals folder.

Running the git status command now will highlights that there are two new files in the Animals
folder:

As usual we want to add our files to the holding zone so that they are ready to be committed;
run the git add . command and successively the git status command:

Now you change your mind and you are not ready to add the snake.txt file to your list of
animals. 
Run the command git reset snake.txt to remove the file from the holding zone.
Running the command git status now will only highlight the cat.txt file in green:

At this point running the command git commit -m”commit message” will only commit the
cat.txt file to the committed project version. Remember that the commit message is arbitrary
and describes your latest change.

Finally if you want to check previous commits you can run the git log command. This will show
a list of all the commits with a long string id, the author and the message of the commit.

As you can see, at the moment we have two commits for our Animals project. If you want to
view a previous version of the project, you can use the git checkout command followed by the
commit id that you want to review. Let’s say we want to go back to where we only had the
dog.txt file inside the folder:

run git checkout 99a2fb8223e5471fb85a0c05d1d9c4f02ce1153b
(your commit id will be different)

If you now look inside the Animals folder, the cat.txt file is no longer there. You can still see the
snake.txt file because it was never added to the commit history.

Now let’s reset back to the current version of the project. In order to do so simply run the git
checkout command followed by the word master.

As you can see the Animals folder is now reset to the latest version of the project and it has
the file dog.txt file again.

You can now practice the git commands shown so far. You can for example add more animals
to the Animals folder or add some content to the existing animal files. Run the git commands
and see if you can keep track of your changes.

Local Git: What happens visually?

Ok, we have seen how to use git locally to keep track of you files but what does exactly
happens visually? What is the holding zone? How did the git pipeline actually look if we could
draw it? 

Working Directory: 
The working directory corresponds to the folder which has a git tracking enabled. In the
previous example the folder Animals was our project working directory.  
 
Staging Area: 
The staging area corresponds to the holding zone. When running the git add command, the
files are added to this intermediate zone. All files standing in this zone are ready to be
committed.  
 
Local Repository: 
The local repository is the place where all of your committed project versions are stored.
Running the git log command will show the content of this repository, showing each project
version with corresponding id, name and description.

Collaborative Git
Great, now we know how to keep track of a project locally on our machine and understand the
underlying Git pipeline. It is time to see how Git can be used in collaborative projects. What if
we want to have a centralise home based project folder where multiple people can contribute
to it at the same time? Luckily for us, Git offers a great way to accomplish this and the steps
are not so different from what we have learnt so far. In fact, we only need a shared place
where we can store our current project version and learn few other Git commands to be able
to interact with it.

Collaborative Git: What happens visually?

 
As you can see, the collaborative Git visual pipeline is not so different from the local Git
pipeline and it only adds to the latter structure.
 
Remote Repository:  
The remote repository is a copy of your project that is hosted on the Internet. Going back to
our Animals folder, it is like having a copy of the folder hosted on the Internet which is
accessible by other people. The project owner, of course, sets different privileges to who can
access the project and modify it. 
 

You can also see that there are three new Git commands when it comes to using Git in a
collaborative way:

git push:
This command permanently records the status of the hosted project at a specific point in
time. It takes your latest local committed project version and adds the changes to the hosted
version of the project.
 
git pull:
This command retrieves the latest version of the hosted project to your working directory
and, if required, it merges the differences between your local version of the project and the
hosted one. 
 
git fetch: 
This command is similar to git pull but instead of retreating the latest version of the hosted
project, it will only synchronise your local version of the project with the hosted one.

Where can we host the project?
There are different online services that allows you to host your project and make it accessible
by multiple people. The leading hosting platforms for software development which are
compatible with Git are GitHub, GitLab and Bitbucket:

 
GitHub: https://github.com/ 

GitLab: https://about.gitlab.com/ 

Bitbucket: https://bitbucket.org/ 
 

All of the above share the same principles when it comes to using Git but for the purpose of
the following example we will use GitHub.

Let’s say you would like to start the Animals project from scratch and share it with a friend so
that you can both work on the project at the same time. The very first thing is for you both to
create an account on GitHub. There are different hosting options to choose from when signing
in and for this project you can use the free package version as it satisfies the requirements. 
 
Once you have both created an account, the project leader, in this case you, will create the
Animals remote repository. Remember: this is the version of the project that lives on the
server and therefore accessible by everyone who has access to it.  
 
In order for you to create the repository, you need to be signed in to GitHub and head to the +
sign icon located on the top right of the navigation bar. Click on the + sign icon and select the
new repository option form the submenu. You will be prompted with the following form:

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

 
Owner: the owner Github user id  
 
Repository name: the name of the project (Animals in this case) 
 
Description: the project’s description  
 

Public/Private: sets whether the repository can be seen publicly or not 
 
Initialise the repository with a README: adds a README file template to the project  
 
 

 

Once you have filled in the form, click the Create repository button to finalise the process.  
Hurrah, you can now see that your Animals remote repository has been created together with
a https link to access it: 

 
The very next thing is for you and your friend to have a copy of the hosted Animals repository
locally on your machines so that you can start collaborating on the project. Open your
terminal, use the cd command and navigate to the path (desktop in this case) where you
would like to create a local copy of the Animals project. Now run the git clone command
followed by the https link provided on GitHub (highlighted in red on the above picture):

 
At this point the Animals folder should be visible on your desktop. The git clone command
initialises the project working directory. It copies the version of the project hosted on the
server and runs the command git init automatically to start the git tracking. Your friend, will
have to follow the same steps and also clone a copy of the Animals folder on their desktop.

Collaborative Git: The Animals Project  

The pipeline to follow in order to collaborate with the Animals project is exactly the same as
the local git pipeline with the exception that you now need to also update the project version
on the server using the newly-introduced git commands fetch, push and pull. 
 
Create a dog.txt file inside the Animals folder on your desktop. 
 
Open the terminal and run the following commands:

• git add . (Adds the dog.txt file to the holding zone)
• git commit -m”Added dog file”(Saves a version of the project on the local repository)  
 
Now if you want to also update the version on the server you need to push your local
repository changes to the hosted repository: 

• Run the command git push origin master or simply git push

 

The project changes have now been added to the hosted version.  
If you check the project on GitHub (refresh the webpage) you will see that it now contains the
dog.txt file.

Now, in order for your friend to see the new changes, they need to synchronise their working
directory with the hosted one. They should first run the commands git fetch and git status to
see if there are any changes:

You can see that your friend working directory is behind by 1 commit compared to the remote
directory on GitLab. They should now run the command git pull to retrieve and eventually
merge the latest changes.

Once the command git pull has been run you will both have the Animals folder on your desktop
containing the dog.txt file. You will also be up to date with the Animals folder hosted on
GitHub.

Now try and collaborate with your friend, add more files to the Animals folder or update
existing ones, add, commit and push the changes to the shared repository. 
 
There are of course other important Git features which have not been covered and I highly
suggest you take a look into them once you are comfortable with the basics:

• How to resolve possible merge conflicts
• Working with Git branches
• Git privileges and Pull requests
• Add local project to already existing hosted repository

All the above listed features will not be necessary to help us with the To-do list project .

Let’s go and have some fun.

Best wishes,

Your programmer Wendy

